
Robert I. Griffin
RS Information Systems, Inc., Brook Park, Ohio

Firewall Traversal for CORBA Applications
Using an Implementation of Bidirectional
IIOP in MICO

NASA/CR—2002-211979

November 2002

The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space
science. The NASA Scientific and Technical
Information (STI) Program Office plays a key part
in helping NASA maintain this important role.

The NASA STI Program Office is operated by
Langley Research Center, the Lead Center for
NASA’s scientific and technical information. The
NASA STI Program Office provides access to the
NASA STI Database, the largest collection of
aeronautical and space science STI in the world.
The Program Office is also NASA’s institutional
mechanism for disseminating the results of its
research and development activities. These results
are published by NASA in the NASA STI Report
Series, which includes the following report types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results of
NASA programs and include extensive data
or theoretical analysis. Includes compilations
of significant scientific and technical data and
information deemed to be of continuing
reference value. NASA’s counterpart of peer-
reviewed formal professional papers but
has less stringent limitations on manuscript
length and extent of graphic presentations.

• TECHNICAL MEMORANDUM. Scientific
and technical findings that are preliminary or
of specialized interest, e.g., quick release
reports, working papers, and bibliographies
that contain minimal annotation. Does not
contain extensive analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION. Collected
papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or cosponsored by
NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

• TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to NASA’s
mission.

Specialized services that complement the STI
Program Office’s diverse offerings include
creating custom thesauri, building customized
databases, organizing and publishing research
results . . . even providing videos.

For more information about the NASA STI
Program Office, see the following:

• Access the NASA STI Program Home Page
at http://www.sti.nasa.gov

• E-mail your question via the Internet to
help@sti.nasa.gov

• Fax your question to the NASA Access
Help Desk at 301–621–0134

• Telephone the NASA Access Help Desk at
301–621–0390

• Write to:
 NASA Access Help Desk
 NASA Center for AeroSpace Information
 7121 Standard Drive
 Hanover, MD 21076

Robert I. Griffin
RS Information Systems, Inc., Brook Park, Ohio

Firewall Traversal for CORBA Applications
Using an Implementation of Bidirectional
IIOP in MICO

NASA/CR—2002-211979

National Aeronautics and
Space Administration

Glenn Research Center

Prepared under Contract NAS3–99175

November 2002

Acknowledgments

This research was conducted under NASA’s CICT/CNIS Information Power Grid Task. The author would like to
express his gratitude to Isaac Lopez and Greg Follen. Karel Gardas also helped in this work by suggesting the

creation of the BiDirIIOP class. Finally, the author would like to thank Scott Townsend for the donation of various
and sundry sage advice.

Available from

NASA Center for Aerospace Information
7121 Standard Drive
Hanover, MD 21076

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22100

This report is a formal draft or working
paper, intended to solicit comments and

ideas from a technical peer group.

Trade names or manufacturers’ names are used in this report for
identification only. This usage does not constitute an official
endorsement, either expressed or implied, by the National

Aeronautics and Space Administration.

This report contains preliminary
findings, subject to revision as

analysis proceeds.

Available electronically at http://gltrs.grc.nasa.gov

http://gltrs.grc.nasa.gov

NASA/CR�2002-211979 1

Firewall Traversal for CORBA Applications Using an
Implementation of Bidirectional IIOP in MICO

Robert I. Griffin

RS Information Systems, Inc.
Brook Park, Ohio 44142

Robert.I.Griffin@grc.nasa.gov

The Object Management Group (OMG) (1)
has added specifications to the General Inter-
ORB Protocol (GIOP 1.2), specifically the
Internet Inter-ORB Protocol (IIOP 1.2), that
allow servers and clients on opposing sides of a
firewall to reverse roles and still communicate
freely (2). This addition to the GIOP
specifications is referred to as Bidirectional
GIOP.

The implementation of these specifications
as applied to communication over TCP/IP
connections is referred to as �Bidirectional
Internet Inter-ORB Protocol� or BiDirIIOP. This
paper details the implementation and testing of
the BiDirIIOP Specification in an open source
ORB, MICO, that did not previously support
Bidirectional GIOP (3). It also provides simple
contextual information and a description of the
OMG GIOP/IIOP messaging protocols.

Recommendations
• BiDirIIOP should be used in situations

where servants located outside the firewall
must request callbacks to clients behind the
firewall.

• Additional effort should be expended to
ensure full compliance with the OMG IIOP
2.6.1 specifications. For example,
mechanisms for the denial of BiDirIIOP
requests at the Portable Object Adapter level
should be implemented.

• Research must be done to provide secure
CORBA interactions between clients and
servants that utilize BiDirIIOP. This will
ensure that negative side effects, such as
client masquerading, do not occur.

1. Background

The rationale for this research is driven by

three major considerations. The first of these is
NASA�s drive to integrate engineering
applications within the Information Power Grid

(IPG) (4). The number of computational
resources offered by IPG promises to increase
the potential for integration of diverse
engineering applications. This integration in
turn creates the capability to perform and analyze
complex, high-fidelity aerospace simulations in a
quick and efficient manner.

The second consideration is the nature of the
engineering applications that need to be
integrated into the Information Power Grid.
Many of the NASA aerospace engineering
applications are sensitive and must be homed
and executed in secure locales. Often there are
non-disclosure agreements and distribution
restrictions that accompany the use of such
applications for research. Such agreements and
restrictions preclude distribution and deployment
of these applications on the Information Power
Grid as the majority of IPG hosts are located
outside of domain specific firewalls (e.g. NASA
Glenn Research Center). If the drive is to
integrate such applications with IPG and one is
not able to execute them on IPG resources then it
is perhaps better to offer them as resources
available to users of NASA�s Information Power
Grid. This offering can be made in a manner
such that non-authorized parties are unable to
access or perform computations with the
restricted applications.

The Common Object Request Broker
Architecture (CORBA) is a middleware
specification for creating distributed computing
frameworks. NASA research shows that
CORBA technology can be used to integrate
sensitive applications within simulation
environments such as the Numerical Propulsion
System Simulation (NPSS) (5). This integration
of applications and simulations can use direct
linkages to CORBA routines within the source
code (6)(7). Additionally, CORBA-based
applications may offer a means to indirectly
provide the application�s functionality utilizing
wrapping techniques that rely on scripts, file
input/output, file signals or pipes (8)(9). The end

NASA/CR�2002-211979 2

Figure 1: Interactions between clients and servants under GIOP version 1.1. Internet Inter-ORB Protocol (IIOP) driven
CORBA applications are not able to reverse client and servant roles and maintain communication across firewalls. The Object
Management Group�s GIOP v1.2 specification allows clients and servers to re-use TCP/IP connections when Bidirectional IIOP
is specified.

results are similar in that they make available
engineering applications that would be otherwise
unavailable.

The final consideration is that of network
security. Specifically, the restrictions placed
upon distributed computing environments when
network administrators use firewalls to limit the
access to secure domains. CORBA applications
that are separated by firewalls may not function
according to their original design or fail entirely.

MICO (3) is an open-source, C++-based
implementation of the CORBA standards that is
used for much of the research and development
done with the Information Power Grid at Glenn
Research Center (GRC). The MICO ORB
(version 2.3.7) did not support the firewall
traversal mechanisms, referred to as BiDirIIOP,
that are recommended by the OMG CORBA
v2.6.1 specification .

It is the goal of this work that BiDirIIOP be
implemented in MICO. In realizing this goal
application developers also moved a step closer
to being able to provide sensitive engineering
applications as Grid Resources while

maintaining their position on a secure host
located behind the firewall. Code created for the
MICO implementation of BiDirIIOP could then
be submitted to the open-source community as a
contribution to their efforts.

1.1 Network Security and CORBA

The increasing need for Internet security has
prompted NASA network administrators to limit
the number of TCP/IP connections that are
available for use between client and server
applications that must talk across a Wide Area
Network (WAN). The rule set that is used to
either prohibit or allow communications between
disparate domains is often referred to as a
firewall. The increased use of firewalls has some
profound effects on the interaction of
applications that rely on CORBA.

 Properly configured clients that reside
behind the firewall may communicate with
services outside of the firewall in a manner that
renders the firewall transparent. Typically, their
network administrators assign a single port to
CORBA clients through which communications

NASA/CR�2002-211979 3

Figure 2: Components of GIOP Version 1.2 Messages. GIOP messages consist of two Headers (GIOP and Message) as well as
a Message Body. The Header Structures are very clearly defined by the OMG Specifications. All data transferred in a GIOP
message is encoded according to the Common Data Representation (CDR) rules that further defines the encoding for all CORBA
Interface Definition Language (IDL) Types. Also, shown is the structure for Service Contexts to be included in the Service
Context Lists of GIOP Request and Reply Messages. The Bidirectional Service Context is provided as a sample.

to the outside may occur. Servants located on
the other side of the firewall must be configured
to listen on that specific port. Failure to properly
configure the base level client-server
communications typically results in loss of
functionality.

In the presence of firewalls, outside-of-the-
firewall CORBA servants may respond
appropriately to inside-of-the-firewall client
requests, but may not initiate requests to those
same clients. Problems occur when the typical
client-server identities are reversed and
communication must be initialized from an
application outside of the firewall. This role
reversal occurs when servants provide
information asynchronously to clients and
servants must use a callback to access one of the
client�s methods (Figure 1).

These problems may be traced to previous
Object Management Group (OMG)
specifications for the underlying messaging
protocol: General Inter-ORB Protocol, or GIOP.
GIOP minor version 1.0 and 1.1 clearly stated
that connections were not symmetrical and that
only clients can initialize connections and send

requests and that only servers can accept and
reply to connections. GIOP 1.2 relaxes these
restrictions in instances where both clients and
servers agree to share connections.

1.2 CORBA Communications

The OMG has established GIOP to define
the method for encoding and decoding the data
types of CORBA�s interface definition language
(IDL). GIOP is designed with simplicity,
scalability and generality in mind. The Internet
Inter-ORB Protocol (IIOP) may be viewed as the
implementation of GIOP that uses TCP/IP as its
transport and network layers.

GIOP messages define several types of
messages: Request, Reply, LocateRequest,
LocateReply, CancelRequest, CloseConnection,
MessageError and Fragment. Each of these
messages is composed of a GIOP header, a
message header and a message body (Figure 2).
The small number of message types maintains
the simplicity of GIOP.

The OMG specification for Bidirectional
GIOP v1.2 may be implemented for TCP/IP
connections as Bidirectional IIOP (BiDirIIOP).

NASA/CR�2002-211979 4

This has some profound changes on messages
and the contents of messages that are sent
between clients and servants.

One of the primary effects of the new
specification is on which party (client or servant)
can originate which types of messages. Both
parties can send each of the eight types of GIOP
messages when bidirectional GIOP
specifications are followed. This contrasts with
v1.0 and v1.1 specifications in that, under these
specifications, clients were restricted to
messages of type Request, CancelRequest,
LocateRequest, MessageError and Fragment.
Servants in these older specifications were
limited to Reply, LocateReply, CloseConnection
and Fragment message types. The change is
profound in that it sets the stage for allowing the
sort of role-reversal that might be required for
CORBA applications that use callbacks.

Clients and servants also require some
means by which they can announce their ability
to make and receive bidirectional connections.
The specification provides a means for this by
creating the BiDirIIOP Service Context. This
service context is identified by a service
identification constant of BI_DIR_IIOP inserted
into a list of other service contexts in the
message header for GIOP request and reply
message types (Figure 2). The inserted
BiDirIIOP Service Context also includes a
sequence of hostnames and ports. This sequence
of hosts and ports allows message recipients to
maintain a list of potential bidirectional
connections and, when needed, to pair these open
connections with message destinations.

The specification indicates that the Request
ID found in the GIOP Message Headers should
unambiguously associate requests and replies.
This simply means that connection originators
must have even numbered Request ID�s.
Likewise, responders must have odd numbered
Request ID�s.

Finally, the OMG specifies policy
requirements for bidirectional communications.
The inclusion of a bidirectional policy with a
value of �BOTH� is used to indicate that
bidirectional communications can occur.
Similarly, the default value of �NORMAL�
indicates that no such communications should
occur. Furthermore, the Portable Object Adapter
(POA) responsible for directing requests to
CORBA servants should deny bidirectional
communications from clients to servants whose
stated BiDirPolicy is �NORMAL�.

2. Tools

One ORB implementation was used on
several different platforms for this study. It was
also necessary to create a simple test scenario
that could serve as an appropriate analog for the
larger integrated infrastructure. Changes to the
MICO ORB source code as well as source code
for applications used in this study may be found
at:

http://accl.grc.nasa.gov/rgriffin/bidiriiop/bidiriiop.html

2.1 ORB Implementation
The work reported here was conducted with

MICO 2.3.7, an open-source, C++-based
CORBA implementation. This is the most
current public release of MICO and is distributed
under the GNU General Public License (GPL).
Open source was desired, as it is often necessary
to make corrections to the source code or add
features, as was the case with this work, to the
code body.

MICO has a solid history of use in
production grade integration (10) and has one of
the most complete CORBA specification
compliances (11). MICO also includes support
for secure communications via SSL and is used
in other NASA Glenn Information Power Grid
projects.

Furthermore, MICO is available for many
platforms. Among the operating systems and
architectures supported are Linux, SGI, HPUX,
and Windows. This diversity is necessary as the
execution of many of the sensitive engineering
applications that are used at NASA may be
confined to powerful machines that meet the
applications computational requirements,
whereas the locale of a CORBA client can run
the gamut of platforms.

2.2 Test Platforms

This research was conducted initially on a
dual Pentium 3 x86 system running Linux
RedHat 7.3 situated behind the NASA Glenn
firewall. Later work extended to the Aeroshark
Cluster, a 128-processor x86 cluster running
Debian GNU/Linux (12) and Beowulf Clustering
middleware. Finally, platforms used in this work
also included Glenn Research Center�s Sharp
system: a 64-bit SGI Origin 2000 running IRIX
6.5.15.

MICO 2.3.7 builds for all platforms
proceeded smoothly and although MICO could
have been built with SSL-support, it was not.

NASA/CR�2002-211979 5

#pragma prefix �nasa.gov�

interface Base {
 boolean doIt();
};

interface Master {
 boolean connect();
 boolean disconnect();
 boolean BaseRegister(in Base BaseServer);
 boolean BaseUnregister (in Base BaseServer);
 boolean Execute();
 boolean ExecuteBase(in string BaseName);
};

Listing 1: Simple Interface Definition. This IDL formulation was used to simulate interactions of a more complex architecture
in which engineering applications could be made available as Grid Resources.

Furthermore, the MICO 2.3.7 build for Sharp
was limited to the 32-bit Application Binary
Interface (ABI).

2.3 Test Scenario

The test scenario had one key criterion. That
was that a CORBA application located outside of
the firewall had to be able to asynchronously
communicate with another CORBA application
located inside the firewall. This communication
took the form of an unsolicited callback.

The scenario used to test the changes to the
ORB Core was a simplified version of the
overall architecture envisioned for providing
engineering applications as Grid Resources.
This simplification considered only three
participants:

1) A Base servant located behind a
firewall. This application was used to
register, execute and provide the results
of the potential engineering application
to a Master servant. It was the recipient
of method callbacks originated by the
Master servant.

2) A Master servant located on the outside
of a firewall served as the call site for
engineering applications located within
the firewall. It is the registration point
for Base servants and the originator of
the method callbacks to those instances.

3) A Client application that could contact
the Master servant and request
execution of engineering codes wrapped
by the Base servant.

The interactions among these participants
were formalized using CORBA�s Interface
Definition Language (IDL) (Listing 1). Method
definitions were restricted to an execute method.
for the Base servant. This method of the Base
servant was the method designated to be the

callback used by the Master servant to test
asynchronous communications.

Connect/disconnect, register/unregister and
execute/execute-by-name methods were assigned
to the Master servant. The register method was
used to provide the Master servant with a
reference to a Base servant. The Master
servant�s execute method was used by the Client
application to trigger requests for Base execution
(i.e., the method callback).

More complicated interfaces could have
been defined, but were deemed unnecessary in
that the key elements for secure, Grid-enabled
engineering applications could be extrapolated
from the architecture defined by the IDL
(Figure 3).

3. Changes to the MICO Source Code

The addition of bidirectional communi-
cations to the MICO Object Request Broker
(ORB) requires that the following tasks be
accomplished:

1) The ORB has to send the Bidirectional
Service Context information in Request
messages.

2) The ORB has to maintain a list of the
information that it receives in the
Bidirectional Service Context of
incoming messages.

3) The ORB, when making connections,
has to consult the list of Bidirectional
information to determine whether or not
to re-use a connection.

The changes to the MICO source code were
confined to three units each of which was
composed of header and implementation files.
The ORB Core unit, (orb_mico.h and orb.cc) and
the Portable Object Adapter (POA) unit

NASA/CR�2002-211979 6

Figure 3: Simplified Architecture for providing Engineering Applications as Grid Services. Interactions between Base and
Master Servants are confined to Register/Unregister and Execute requests. Clients may connect to, disconnect from and request
executions from the Master Servant. The Base Servant uses an indirect wrapping method (POSIX Fork/Exec) to begin the
Engineering Application. The test architecture replaced the execution of an engineering application with �execute� directions for
the directory listing command �ls > ls.out�.

(poa_impl.h and poa_impl.cc) received few
changes, whereas the Inter-ORB Protocol unit
(iop.h and iop.cc) contained the greatest number
of changes. Most of the minor changes to these
units have been omitted in the interest of brevity.

3.1 Changes to the ORB Core Unit

One of the first priorities in this work was to
create a simple command-line switch that would
indicate that the ORB was to use bidirectional
communications. Thus, the ORB was set to
recognize a new command-line switch:

��ORBBiDirIIOP�
Once recognized a private boolean member of
the ORB class, isBiDir, is changed from its
default value of false to true. Two public
accessor functions for the isBiDir member were
also created in the ORB class, setBiDirectional
and isBidirectional.

The ORB Core unit was altered to include
an Object Adapter: bidiriiop_instance, an
instance of the new BiDirIIOP class
(Section 3.3). This instance initially assigned a

NULL-value is assigned a newly constructed
BiDirIIOP class when isBiDir is set to true.
Additionally, ORB GIOP and IIOP versions are
assigned values of 1.2 to ensure compliance with
the GIOP 1.2 standard. The bidiriiop_instance
variable is then assigned IIOP listening points
(i.e., host name and port number).

Changes were also made to the assignment
of ORB message identification numbers.
Bidirectional applications that take the role of the
client by initiating communications with a
CORBA servant are assigned even ORB
message id�s. Similarly, applications acting as
the servant are assigned odd message id�s. These
changes are dictated by the OMG Bidirectional
GIOP specifications and are necessary to allow
interoperability between different ORB imple-
mentations. However, ORB-interoper-ability was
not tested in the scope of this research.

3.2 Changes to the POA Unit

Changes to the Portable Object Adapter
(POA) Unit provided a simple framework for the

NASA/CR�2002-211979 7

CORBA::ORB_var orb;
orb = CORBA::ORB_init (argc , argv);
CORBA::Object_var poaobj = orb->resolve_initial_references ("RootPOA");
PortableServer::POA_var poa = PortableServer::POA::_narrow (poaobj);
PortableServer::POAManager_var mgr = poa->the_POAManager();
CORBA::Any polval;
PortableServer::POA_var bidirpoa;
polval <<= BiDirPolicy::BOTH;
CORBA::Policy_var pPol = orb->create_policy(BiDirPolicy::BIDIRECTIONAL_POLICY_TYPE,

polval);
CORBA::PolicyList pl;
if (!CORBA::is_nil(pPol))
{
 pl.length(1);
 pl[0] = pPol;
 bidirpoa = poa->create_POA ("BiDirPOA", mgr, pl);
}

Listing 2: Code Listing for the creation of BiDirectional Portable Object Adapter. Initially, a request to the ORB to create a
policy of type BiDirPolicy::BIDIRECTIONAL_POLICY_TYPE with a value of BiDirPolicy::BOTH is made. This policy is then
Passed to the RootPOA as part of a request request for a new Portable Object Adapter. It is this new POA that is responsible for
intercepting and allowing or denying bidirectional communications.

detection of bidirectional communication
policies. Internally, two new private members
were added to the POA_impl class. The first of
these additions was the boolean variable isBiDir.
The second of these was bidir_policy; an
instance of BiDirPolicy::BidirectionalPolicy.

Changes were made to the set_policies
member function of the POA_impl class to
create a new policy, bidir_policy, whose value
was initially NULL and later changed according
to the existence and/or value assigned to the
policies that were passed in as arguments to
set_policies. If the arguments do not contain a
BiDirPolicy::BidirectionalPolicy then the
default value of BiDirPolicy::NORMAL for
bidir_policy is used.

The Root POA always has a BiDirPolicy
value of NORMAL. POA�s that are created by
servant applications may be assigned a
BiDirPolicy of BOTH. A BiDirPolicy is
requested from the ORB�s create_policy
method. This policy is then propagated to new
POA�s via the RootPOA�s create_POA method
(Listing 2).

It is anticipated that an interceptor for the
POA to allow or deny incoming bidirectional
communications will be added to the source
code. This, however, was not implemented in
the current research. Instead, bidirectional
communications are monitored only in the IOP
unit.

3.3 Changes to the IOP Unit.

The changes to the Inter-ORB Protocol
(IOP) Unit were the most extensive. Two
classes, GIOPConn and GIOPCodec, were
modified and a new class, BiDirIIOP, was
created. BiDirIIOP controls many instances of

GIOPConn each of which has an instance of
GIOPCodec.

Two global variables were also added to the
IOP unit. These variables were of type
ListenPointList. ListenPointList is a list
containing multiple, different instances of the
structure ListenPoint. Each ListenPoint is
composed of a Host string and a Port integer.
The _lpServer instance of the listen point list is
responsible for reporting the ORB-assigned
listen points in the Bidirectional Service Context
data of outgoing GIOP messages (Figure 2). A
list of potential bidirectional communications is
maintained in _lpClient. The _lpClient instance
is filled using information from the Service
Context data of incoming GIOP messages (i.e.,
the values contained in the client�s _lpServer).

3.3.1 Changes to GIOPCodec and GIOPConn

 GIOPCodec is responsible for encoding
and decoding GIOP messages. It is the point
where the BiDirIIOP Service Context can be
detected in the GIOP Message Header of
incoming messages and placed in GIOP Message
Header of outgoing messages.

GIOPCodec was modified to include a
private boolean member isBiDir. This boolean
member is only set during the initial construction
of the class. Its default value is false unless
otherwise specified. It is used in a modified
member function, get_contextlist, to determine
whether an attempt should be made to detect the
Bidirectional Service Context in incoming
messages. The global variable _lpClient is
modified to include the ancillary data when a
Bidirectional Service Context is identified. The
variable, isBiDir, is also used to determine
whether a Bidirectional Service Context
should be inserted into outgoing messages.

NASA/CR�2002-211979 8

GIOPCodec member function put_contextlist
was modified to perform this insertion. The data
inserted into the context mirrors the contents of
_lpServer.

Changes to GIOPConn were much simpler.
TCP/IP transport is flagged as blocked according
to the static member function isblocking() of
BiDirIIOP as opposed to that of the older class
IIOPProxy (Section 3.3.2). Choice of blocking
rules is determined when a bidirectional flag in
the constructor is set to true. This is necessary as
the isblocking() functions of BiDirIIOP and
IIOPProxy are indicative of the underlying state
and behavior of two very different classes.

3.3.2 Creation of the BiDirIIOP Class

The components for a bidirectional object
adapter existed in the MICO code prior to this
work. All that was missing was their integration
into a cohesive class. Two classes, IIOPProxy
and IIOPServer are subclassed from
CORBA::ObjectAdapter. Each of these
classes implements the virtual abstract methods
that are defined in the base
CORBA::ObjectAdapter class.

IIOPProxy is used as the channel by which
asynchronous request, bind and locate messages
are propagated to remote ORBS. Conversely,
IIOPServer is used to direct incoming messages
to the appropriate objects contained within the
local ORB and to propagate the responses of
those objects back to remote clients.

One key limitation to providing bidirectional
communications with the pre-existing
architecture was that each of these derived
classes maintained its own private set of
GIOPConn instances. Thus, it was not possible
to map the connection addresses of incoming
messages (IIOPServer) with those of the
outgoing (IIOPProxy) messages. Connection
reuse was implausible in the light of this
fundamental disconnect.

The BiDirIIOP class created a solution to
this problem by combining IIOPProxy and
IIOPServer. Server and proxy connections are
kept in separate lists. Only slight overlap occurs
in terms of the member functions (e.g., events
that closed or cancelled connections in
GIOPConn-based callback). A new member
function, isServerConn, is used to differentiate
between connections belonging to the proxy or
server pools.

Connection information is shared and
mapped to hosts and ports efficiently in this new
class. The new class defines and maintains a
new member variable _bidir_conns. The

_bidir_conns variable represents a mapping of
connection string to GIOPConn (type
MapStringConn). The connections string is
composed of the protocol (�inet�) the hostname
and the port (e.g., �inet:localhost:2089�). This
information (host and port) can be found in
_lpClient after an incipient call to
GIOPCodec::get_contextlist occurs.

Maintenance for _bidir_conns requires both
addition and deletion of entries as GIOP
connections are added and subtracted from
BiDirIIOP. Entries are added after GIOP
request and reply messages are processed and are
removed from the _bidir_conns map when a
GIOP CloseConnection is received. Finally, the
contents of _bidir_conns are deleted entirely
during cleanup of the BiDirIIOP class.

The list of connections in _bidir_conns can
thus be consulted to find connections (i.e.
GIOPConn�s) for reuse. This consultation
occurs in the BiDirIIOP�s make_conn member
function that is used by the asynchronous
invoke, bind and locate calls on a remote object.

Remote objects are contacted via an
Interoperable Object Reference (IOR). IOR
profiles for these remote objects contain a target
address representing the address that the remote
object�s ORB is listening on. This �listening�
address is contained in the remote ORB�s
_lpServer list and is �advertised� by the object in
the Bidirectional Service Context of every
BiDirIIOP request.

Not by coincidence, this IOR Profile
address, when stringified, is the same format as
the connection string contained in _bidir_conns.
The GIOPConn associated with a
_bidir_conns entry may thus be reused for
bidirectional communication when the stringified
IOR profile�s address matches the connection
string. Searches through _bidir_conns are
conducted iteratively, but further work can be
done to implement a fast find function for this
map.

If a reusable connection cannot be found
then the BiDirIIOP::make_conn function first
looks for the connection in its list of proxy
connections. If a proxy connection cannot be
found in this list then the function reverts to
creating a new connection to the remote object.
This behavior is indistinguishable from that of
the IIOPProxy::make_conn function.

Debugging messages were also added to the
BiDirIIOP class so that its reuse of connections
could be verified. These debugging messages
could be enabled using the command-line flags:
�-ORBDebug IIOP �ORBDebug GIOP�.

NASA/CR�2002-211979 9

<appname> \
-ORBDebug IIOP \
-ORBDebug GIOP \
-ORBIIOPAddr \

inet:<host>:<port> \
-ORBBiDirIIOP

Listing 3: Debug output from the Master Servant. (1) The Master servant is started and listens on its assigned port. (2)
Communications with the Base servant shows connect and register requests. (3) Similarly, the client application performs a
connect request with the Master. Codeset negotiations are incidental for all GIOP version 1.2 connections. The final request from
the client is for the execution of the Base servant. (4) The Master servant immediately reuses the Base Servant connection (bold)
with a callback request for the Base Servant�s doit method. (5) The reply from the Base Servant is forwarded to the client
application and connections are closed by the client application (close connection). (6) Subsequently, the Base servant makes
calls to the Master�s unregister method and closes the connection. Domain names and the name of the secure hosts have been
changed to protect NASA resources.

MasterImpl MasterImpl MasterImpl MasterImpl ----ORBDebug IIOP ORBDebug IIOP ORBDebug IIOP ORBDebug IIOP ----ORBDebug GIOP ORBDebug GIOP ORBDebug GIOP ORBDebug GIOP ----ORBIIOPAddr inet:sharp.ipgdomain:65435 ORBIIOPAddr inet:sharp.ipgdomain:65435 ORBIIOPAddr inet:sharp.ipgdomain:65435 ORBIIOPAddr inet:sharp.ipgdomain:65435 \\\\
----ORBBiDirIIOPORBBiDirIIOPORBBiDirIIOPORBBiDirIIOP
IIOP: BIDIR server listening on inet:sharp.ipgdomain:65435 IIOP version 1.2

1

IIOP: BIDIR new connection opened from inet:firewall3.nasadomain:65433
IIOP: BIDIR incoming data from inet:firewall3.nasadomain:65433
GIOP: incoming CodeSets context
GIOP: requested TCS-C is ISO 8859-1:1987; Latin Alphabet No. 1
GIOP: requested TCS-W is ISO/IEC 10646-1:1993; UTF-16, UCS Transformation Format
16-bit form
GIOP: BiDirectional IIOP context_id received
GIOP: BIDIR incoming Request from inet:firewall3.nasadomain:65433 with msgid 2
GIOP: BIDIR sending Reply to inet:firewall3.nasadomain:65433 for msgid 2 status is 0
IIOP: BIDIR incoming data from inet:firewall3.nasadomain:65433
GIOP: BiDirectional IIOP context_id received
GIOP: BIDIR incoming Request from inet:firewall3.nasadomain:65433 with msgid 4
GIOP: BIDIR sending Reply to inet:firewall3.nasadomain:65433 for msgid 4 status is 0

2

IIOP: BIDIR new connection opened from inet:aeroshark.ipgdomain:33624
IIOP: BIDIR incoming data from inet:aeroshark.ipgdomain:33624
GIOP: incoming CodeSets context
GIOP: requested TCS-C is ISO 8859-1:1987; Latin Alphabet No. 1
GIOP: requested TCS-W is ISO/IEC 10646-1:1993; UTF-16, UCS Transformation Format
16-bit form
GIOP: BiDirectional IIOP context_id received
GIOP: BIDIR incoming Request from inet:aeroshark.ipgdomain:33624 with msgid 2

3

IIOP: BIDIR reusing GIOP connection to inet:firewall3.nasadomain:65433IIOP: BIDIR reusing GIOP connection to inet:firewall3.nasadomain:65433IIOP: BIDIR reusing GIOP connection to inet:firewall3.nasadomain:65433IIOP: BIDIR reusing GIOP connection to inet:firewall3.nasadomain:65433
GIOP: BIDIR sending Request to inet:firewall3.nasadomain:65433 msgid is 4GIOP: BIDIR sending Request to inet:firewall3.nasadomain:65433 msgid is 4GIOP: BIDIR sending Request to inet:firewall3.nasadomain:65433 msgid is 4GIOP: BIDIR sending Request to inet:firewall3.nasadomain:65433 msgid is 4
IIOP: BIDIRIIOP: BIDIRIIOP: BIDIRIIOP: BIDIR incoming data from inet:firewall3.nasadomain:65433 incoming data from inet:firewall3.nasadomain:65433 incoming data from inet:firewall3.nasadomain:65433 incoming data from inet:firewall3.nasadomain:65433
GIOP: BiDirectional IIOP context_id receivedGIOP: BiDirectional IIOP context_id receivedGIOP: BiDirectional IIOP context_id receivedGIOP: BiDirectional IIOP context_id received

4

GIOP: BIDIR sending Reply to inet:aeroshark.ipgdomain:33624 for msgid 2 status is 0
IIOP: BIDIR connection to inet:aeroshark.ipgdomain:33624 closed or broken 5
IIOP: BIDIR incoming data from inet:firewall3.nasadomain:65433
GIOP: BiDirectional IIOP context_id received
GIOP: BIDIR incoming Request from inet:firewall3.nasadomain:65433 with msgid 6
GIOP: BIDIR sending Reply to inet:firewall3.nasadomain:65433 for msgid 6 status is 0
IIOP: BIDIR connection to inet:firewall3.nasadomain:65433 closed or broken

6

4. Results

Bidirectional communications testing of the
CORBA applications utilizing the new
BiDirIIOP class was performed on three
different hosts. Two of these hosts were the IPG
Resources: Aeroshark Cluster and Sharp. The
last host was located on a Linux machine
running inside the NASA Glenn firewall. Each
of the elements of the simple testing architecture
(Figure 3) was placed on a different host. The
choice of hosts also ensured that the changes
made to the code to allow bidirectional
communications would be compilable on
multiple platforms and could thus be integrated
quickly into the MICO concurrent versioning
system. The breakdown is as follows:

1) Secure Host: Home for the Base
Servant (BaseImpl).

2) Sharp: Home for the Master Servant

(MasterImpl).
3) Aeroshark: Home for the Client

Application (miniclient).

The command-line parameters arguments

are of the form:

Execution for this test took place in four
steps. First, the Master servant was started.
Subsequently a file containing the Master
servant�s Interoperable Object Reference (IOR)
was copied to both the Base servant and client
machines. The Base servant was started next.
Finally, the client application was executed.

NASA/CR�2002-211979 10

The Master servant�s debugging output for
this suite of executions clearly indicated that
bidirectional communications and connection
reuse has occurred. Furthermore, these results
have shown that communications have gone
through the firewall (firewall3) in both directions
(Listing 3).

5. Conclusions

The initial implementation of the OMG
Bidirectional Inter-ORB Operability protocol
works well in mixed (secure and insecure)
domain testing. It is anticipated that the MICO
BiDirIIOP implementation will be useful in
crossing (and re-crossing) NASA�s secure
network boundaries. This work will be
incorporated in the effort to provide engineering
applications as resources to the NASA
Information Power Grid.

There are several considerations for future
studies with BiDirIIOP. The first of these is the
means by which POA�s are to permit or deny
bidirectional connections. The inclusion of the
bidirectional policy is only the first step in this
process. The OMG specification leaves unclear
the means by which individual POA instances
are to check the bidirectional nature of incoming
requests. One solution to this problem is to
create an interceptor for each newly instantiated
POA. The OMG has recently added separate
specification for portable interceptors (1).
However, MICO does not currently support this
specification. Addition of portable interceptors
to MICO could be helpful in implementing the
functionality for BiDirIIOP implied by the
specification. Changes to the IOP unit�s
GIOPCodec class would also be needed as the
GIOPCodec::get_contextlist function currently
removes the Bidirectional Service Context from
the message header.

One further consideration is that of the
security of bidirectional communications. The
implementation of BiDirIIOP discussed within
this paper does not prevent potentially foreign
clients from masquerading as the recipient of a
callback. A solution to this problem is to use
Secure Socket Layer IOP (SSLIOP) as the OMG
specification states that BiDirIIOP should not
interfere with SSLIOP. However, no testing has
been done to confirm that MICO implementation
of BiDirIIOP works with SSLIOP.

A final consideration for future study is how
the MICO implementation of BiDirIIOP affects
other services such as the Event, Naming and
Trader services. One desired scenario is that
these services will actually perform across the
NASA secure domains when the execution of
these standalone services includes the
bidirectional communication directive. This
would be especially useful to the Event service.
A bidirectional Event Service would allow
callbacks to be made across the firewall, thus
permitting communicating the occurrence of
important events to a client situated on a secure
host.

References

1. URL: http://www.omg.org.
2. Object Management Group. The Common Object

Request Broker: Architecture and Specification.
Revision 2.6.1. May, 2002.

3. A. Puder and K. Romer. MICO is CORBA. URL:
http://www.mico.org.

4. URL: http://www.ipg.nasa.gov.
5. Lopez, G. J. Follen, R. Gutierrez, I. Foster, B.

Ginsburg, O. Larsson, S. Martin, S. Tuecke, D.
Woodford. NPSS on NASA's IPG: Using CORBA and
Globus to Coordinate Multidisciplinary Aeroscience
Applications. Proceedings of the NASA HPCC/CAS
Workshop, Feb. 15-17, 2000. URL:
http://accl.grc.nasa.gov/IPG/CORBA/NPSS_CAS_
paper.html.

6. Sang, C. M. Kim, I. Lopez. Developing CORBA-Based
Distributed Scientific Applications from Legacy
Fortran Programs. URL:
http://www.ipg.nasa.gov/research/papers/CAS_corba.
pdf

7. S. Townsend. Wrapping ADPAC CFD Code. URL:
http://accl.grc.nasa.gov/IPG/CORBA/wrap_fortran.
scott.html.

8. Sang. C. Kim. Developing a wrapping tool for CORBA
application of FORTRAN codes. URL:
http://accl.grc.nasa.gov/IPG/CORBA/wrap_fortran.
chan.html.

9. R. Gutierrez. Techniques for Wrapping Fortran Codes.
URL:
http://accl.grc.nasa.gov/IPG/CORBA/wrap_fortran.rich
ard.html.

10. Weather Channel. URL:
http://linuxtoday.com/news_story.php3?ltsn=2000-10-
10-011-04-PR.

11. CORBA ORB Compliance. URL:
http://www.opengroup.org/press/7jun99_a.htm.

12. Aeroshark. URL: http://cict.grc.nasa.gov/ashark/.

This publication is available from the NASA Center for AeroSpace Information, 301–621–0390.

REPORT DOCUMENTATION PAGE

2. REPORT DATE

19. SECURITY CLASSIFICATION
 OF ABSTRACT

18. SECURITY CLASSIFICATION
 OF THIS PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

Form Approved

OMB No. 0704-0188

12b. DISTRIBUTION CODE

8. PERFORMING ORGANIZATION
 REPORT NUMBER

5. FUNDING NUMBERS

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

13. ABSTRACT (Maximum 200 words)

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION
 OF REPORT

16. PRICE CODE

15. NUMBER OF PAGES

20. LIMITATION OF ABSTRACT

Unclassified Unclassified

Final Contractor Report

Unclassified

1. AGENCY USE ONLY (Leave blank)

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546–0001

Available electronically at http://gltrs.grc.nasa.gov

NASA CR—2002-211979

E–13648

WU–704–40–24–00

16

Firewall Traversal for CORBA Applications Using an Implementation of
Bidirectional IIOP in MICO

Robert I. Griffin

CORBA; MICO; Information power grid; Grids

Unclassified -Unlimited
Subject Category: 61 Distribution: Nonstandard

RS Information Systems, Inc.
2001 Aerospace Parkway
Brook Park, Ohio 44142

Project Manager, Isaac Lopez, Vehicle Technology Directorate, NASA Glenn Research Center, organization code 0300,
216–433–5893.

The Object Management Group (OMG) has added specifications to the General Inter-ORB Protocol (GIOP 1.2), specifi-
cally the Internet Inter-ORB Protocol (IIOP 1.2), that allow servers and clients on opposing sides of a firewall to reverse
roles and still communicate freely. This addition to the GIOP specifications is referred to as Bidirectional GIOP. The
implementation of these specifications as applied to communication over TCP/IP connections is referred to as ‘Bidirec-
tional Internet Inter-ORB Protocol’ or BiDirIIOP. This paper details the implementation and testing of the BiDirIIOP
Specification in an open source ORB, MICO, that did not previously support Bidirectional GIOP. It also provides simple
contextual information and a description of the OMG GIOP/IIOP messaging protocols.

November 2002

NAS3–99175

http://gltrs.grc.nasa.gov

